
Chapter 1: Introduction

1-1 Chapter 1: Introduction

Chapter 1: Introduction

Abstract

TART95 is a coupled neutron-photon Monte Carlo transport code. This computer code is
designed to use three dimensional (3-D) combinatorial geometry. Neutron and/or photon
sources as well as neutron induced photon production can be tracked by this code. The
code can calculate: 1) static reactivity problems, 2) dynamic reactivity problems, 3) source
problems involving any combination of neutron and/or photon sources. The code allows
for a very wide variety of source descriptions, as well as scoring and output options that
meet the needs of most applications; this is one of the most powerful features of TART95
that make it so versatile for use in such a wide variety of applications.

TART95 is now available for use on virtually any computer. It has already been
implemented and used on CRAY, HP, SUN, SGI, Meiko, DEC-Alpha, IBM-RSIC, and
IBM-PC. It is written in such standard FORTRAN that it should be relatively easy to
implemented and use on any computer.

Dedication

The report is dedicated to the memory of Sterrett T. Perkins who passed away in March,
1995. For the last quarter century Ted was a major contributor to all aspects of our efforts
in particle transport, from evaluating nuclear and atom data, all the way through to the
models used in all of our transport method, including Monte Carlo, Sn and diffusion. He
was both a great theorist and yet at the same time a very practical person; an attribute that
is very rare to find in a person. He was also a good friend and he will be sorely missed by
all of us.

Acknowledgments

Over the years many people contributed to the development of the TART family of codes.
There are many people who should be acknowledged and thanked for their efforts. The
following is a partial list in which we hope we do not overlook anyone. We acknowledge
and thank, Richard Bentley, Donald Davis, William Grayson, Robert Howerton, John
Terrall, Robert Wright, and most of all John Kimlinger who spent more than sixteen years
working on the TART family of codes. On a more recent note, we acknowledge and thank
Jeff Latkowski who significantly contributed in testing the implementation of TART95 on
workstations; many thanks Jeff, we couldn't have done it without you. Last, but certainly
not least, we thank Susan Mangels for helping to format and produce the final version of
this report.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7405-ENG-48.

Chapter 1: Introduction

1-2 Chapter 1: Introduction

Overview of this Report

The report is not designed as a general text on Monte Carlo; there are more than enough
publications on this subject. It is only intended as a user manual for the TART95 code and
as such only discusses those methods used by TART95, in sufficient detail to allow users
to understand what the code is doing and how to use it.

An important consideration in designing this report was to insure that it would be available
to users on-line on computers. Due to the current incompatibility between various word
processors, particularly with respect to complicated equations and figures, it was decided
to constrain this report to contain only text, using Microsoft Word. Hopefully the result
will be a report that can be translated and used by users who have one of any number of
other word processors that can read Microsoft Word text files.

For on-line use this report has been divided into a number of self contained chapters, each
containing its own table of contents and subject index. The pages have been numbered
independently within each chapter to allow each chapter to be maintained, updated, and
distributed independently of the other chapters.

The only portion of this report that is not available on-line is the figures. However, the
distributed code, its utilities, and example problems, will allow the interested user to re-
produce these figures on their own computers, particularly all those figures produced by
the interactive graphics utility code TARTCHEK.

We sincerely hope that this approach meets your needs, and we would appreciate any
comments (pro or con) concerning this report and its usefulness in your applications.

Introduction

TART95 is a coupled neutron-photon Monte Carlo transport code. This computer code is
designed to use three dimensional (3-D) combinatorial geometry. Neutron and/or photon
sources as well as neutron induced photon production can be tracked by this code. The
code can calculate: 1) static reactivity problems, 2) dynamic reactivity problems, 3) source
problems involving any combination of neutron and/or photon sources. The code allows
for a very wide variety of scoring and output options that meet the needs of most
applications; this is one of the most powerful features of TART95 that make it so versatile
for use in such a wide variety of applications.

One of the biggest advantages of TART95 compared to other neutron-photon Monte
Carlo codes is speed. If you compare the running time of a variety of Monte Carlo codes
running the same calculations you may be surprised to find problems that take others
codes hours or many minutes to complete can be run in a few minutes or even seconds
using TART95.

Chapter 1: Introduction

1-3 Chapter 1: Introduction

TART95 achieves this speed by building on the almost 40 years of experience using the
TART family of codes [1]; hundreds of man-years of user experience using methods that
experience has shown to be both fast and accurate. TART95's treatment of geometry and
nuclear and atom data, to only include what's important (only to within the accuracy that it
is known) and necessary in calculations in order to quickly obtain accurate answers,
particularly contribute to the speed of the code.

Another advantage of TART95 is that it is simple to use; you do not have to be an expert
in particle transport and Monte Carlo variance reduction to use TART95. You do have to
learn to prepare input parameters defining your problem's geometry, sources, and what
you would like to be output, etc. But beyond this point you will be able to successfully use
TART95 and it will use its built-in expertise to apply variance reduction and other
techniques to get you an accurate answer as fast as it can.

Regardless of how good, fast and accurate a code is, if it cannot produce the types of
results that you are interested in it isn't much use to you. As far as the advantages of
TART95, we should again mention the wide variety of scoring and output options that
meet the needs of most applications. The most basic output is energy dependent results for
each zone, e.g., current across zone boundaries, fluence and energy deposition within
zones. However, TART95 will allow you to tally and output results as a function of space
(by zone), energy, direction, and even time. For example, if you would like to know the
leakage from a system as a function of energy, direction (the angular distribution), and
time, just ask for it. We encourage users to spend the time to become familiar with the
variety of scoring and output options available with TART95.

TART95 is designed to be as similar as possible to the TARTNP code [1], as far as the
user interface, e.g., it uses the same input parameters and produces similar output results.
This program differs from TARTNP in that TARTNP was originally written in
LRLTRAN, a dialect of FORTRAN developed at Livermore and generally incompatible
with the FORTRAN used elsewhere. TARTNP was designed to be used on the large
central computers available at Livermore; currently CRAY computers, and is still heavily
used at Livermore. In contrast TART95 is written in modern FORTRAN and is designed
to be used on large central computers as well as a wide variety of currently available
workstations and even small personal computers, e.g., IBM-PCs.

The TARTNP code is quite an old code, which give it both disadvantages and advantages.
Its disadvantages include that it was originally designed when the available computers
were relatively small, forcing design compromises in order to implement the code. It was
also originally written in the now outdated LRLTRAN language and is very poorly
documented, both in terms of documentation to allow users to use the code and in terms
of documentation to allow programmers to maintain and update the code. Its advantages
are that for a wide variety of applications it is still the fastest neutron-photon Monte Carlo
transport code available, and what should not be overlooked is that it now has hundreds of
man-years of user and programmer experience incorporated into it.

Chapter 1: Introduction

1-4 Chapter 1: Introduction

In designing TART95 we have attempted to keep the advantages of TARTNP and
eliminate its disadvantages. In particular TART95 is now written in modern FORTRAN
that has already allowed it to be easily implemented on a wide variety of computers. In
addition the size of the code has been expanded, in line with the large size of currently
available workstations, to allow it to handle larger, more complicated problems. Most
important, by using much of the original logic from TARTNP, the speed of the code has
been not only maintained, but improved. Carrying over much of the logic of TARTNP has
also allowed much of the experience of TARTNP to also be incorporated in the new
TART95 code. However, the user must appreciate that TART95 is a new code and as
such it will take some time for it to establish a track record similar to TARTNP's, as far as
reliability and user acceptance. As such users should not consider TART95 to be an
immediate replacement for the production version of TARTNP, as currently used on the
Livermore CRAYs, but rather as a step toward providing a reliable replacement for
TARTNP before the Livermore CRAYs are replaced and the current production version
of TARTNP is no longer available. Therefore we encourage TARTNP users to try
TART95 as soon as possible, so that we may establish a track record using your
applications. If you follow this advice there should be a smooth transition of your work
from CRAY to workstations, without encountering any inconveniences to you or delay in
accomplishing your work.

Constraints on the Design of TART95

TART95 is designed to eventually replace the CRAY production version of TARTNP.
TART95 is designed to be used on as many different types of computers as possible; it has
presently been implemented and tested on CRAY, SUN, SGI, HP, Meiko, DEC-Alpha,
IBM-RSIC, and IBM-PC. At the same time the initial version of TART95 is designed to
produce results that are as close as possible to the results obtained using the CRAY
production version of TARTNP.

In line with this last constraint, TART95 uses the same nuclear and atomic data files used
by TARTNP, as well as the methods used to interpret the data in these files; no attempt
has been made to improve the neutron and photon data used by both TARTNP and
TART95. TART95 also uses the same user interface as TARTNP; both input parameters
and output results are in the same form for both codes. This approach has simplified
testing and verification of the new TART95 code by allowing it to be directly compared to
TARTNP using a wide variety of test problems. It has also made it much easier for users
who are familiar with TARTNP to shift over to using TART95, e.g., if you are used to
using TARTNP and have any decks of input parameters you can run exactly the same
decks using TART95 and the results that you obtain will be in the same format.

Emphasis in designing this first version of TART95 has been to develop a code that does
the same things as the existing CRAY production version of TARTNP, but can be used on
virtually any computer. Extending the initial version of TART95 to do other types of
calculations, or to use different nuclear or atomic data, or to use different methods was
not a priority. The top priority was to convert TARTNP from the outdated LRLTRAN

Chapter 1: Introduction

1-5 Chapter 1: Introduction

language to modern FORTRAN, eliminating as much computer dependence as possible.
Even this modest objective required that most of the original TARTNP code be replaced,
so that although the user interface looks the same to users, the code that is actually being
run is new and completely different from TARTNP.

Only after TART95 has been more widely used and accepted will the code be extended.
Some areas that could be extended include: 1) a more general geometry treatment to
include cubic and quartic surfaces, e.g., a torus, 2) a more modern treatment of nuclear
and atomic data, e.g., the treatment of photon kinematics by TARTNP is from the 1960's
and while adequate could be easily updated and improved, similarly many of the neutron
evaluations are now quite old and could easily be replaced by currently available modern
evaluations, 3) the TARTNP 175 neutron groups, that has now been used for 20 years,
could be extended to include more groups to take advantage of the current much larger
computers, 4) extension to transport other particles, such as electrons, positrons and
charged particles; this extension would be in line with development of the All Particle
Transport Method, 5) an improved user interface both in terms of assisting in preparation
of input parameters and in terms of assisting in interpreting results, e.g., use codes to go
directly from blueprints to TART95 input parameters.

Benchmark Results

If you search the literature you will find literally hundreds of reports documenting the
ability of TARTNP to accurately reproduce benchmark results for a wide variety of
applications. We have no intention of duplicating the contents of all of these reports here.
Any benchmark results presented in this report have a different aim than to prove the
accuracy and wide applicability of TARTNP. Based on published results we here assume
that TARTNP is accurate. The aim of benchmarking in this report is much simpler and in
line with the design criteria and constraints described above: since we assume TARTNP is
accurate, in this report all we have to do is demonstrate that TART95 results agree with
TARTNP results. If we can do this much simpler task we will have met our goal of
producing a workstation code that agree with TARTNP results.

Are Workstations Practical?

Traditionally using large 3-D Monte Carlo codes have required large central computers. Is
it really practical to use a workstation or even an IBM-PC to perform these types of
calculations? The answer is yes. Today workstations and even IBM-PCs have grown in
memory size and speed to the point where they are very competitive, and in some cases
faster, than large central computers.

Later in this report we present example results running 68 fast critical assemblies using
both the old TARTNP code, that can only be used on CRAY computers, and TART95
using a variety of computers. Here we present the time required to run these calculations.
Running time is still not a standard FORTRAN feature on all computers. In order to
implement TART95 on many different computers we were forced to use whatever running

Chapter 1: Introduction

1-6 Chapter 1: Introduction

time information we could obtain on each computer. Therefore the times presented here
are in some cases central processor times (CPU) and in other cases wall clock time; CPU
time will always be equal to or less than wall clock time. However we should stress that
the times for both CRAY results are CPU times, so that the below timing results are the
best running times that a CRAY-YMP can produce for this example problem.

Code Computer Running Ratio to
 Time TARTNP
 (Seconds) CRAY-YMP

TARTNP CRAY-YMP 5396 1.0
TART95 CRAY-YMP 4912 0.91
TART95 HP-350 4322 0.80
TART95 DEC-Alpha 6130 1.14
TART95 SUN 9673 1.79
TART95 Meiko 9993 1.85
TART95 SGI 10157 1.88
TART95 IBM-RSIC 14838 2.75
TART95 IBM-PC 18437 3.41

These results illustrate several important points,

1) Workstations and even an IBM-PC are now competitive with large central computers.
Using exactly the same TART95 code on a CRAY-YMP and HP-350 shows that the HP-
350 is about 12 % faster than the CRAY-YMP. Even an IBM-PC is competitive in the
sense that the CRAY-YMP times are CPU times while the IBM-PC is wall clock time.
Due to time sharing on the CRAY-YMP, the IBM-PC actually completed the calculations
in less wall clock time and we had the results on our desk faster; when we consider
people's salaries getting results quickly is a major concern.

2) TARTNP has always been known as a very fast code. Comparison of the TARTNP and
TART95 results on a CRAY-YMP illustrates that in converting TART95 for use on
workstations, not only have we maintained this speed advantage, we have improved it. By
comparing the CRAY-YMP results we can see that the newer TART95 code runs about
10 % faster than the older TARTNP code.

Bottom line on are workstations practical: you bet they are!!!!

The History of the TART Family of Codes

The present TARTNP and TART95 codes are built upon almost 40 years of experience in
Monte Carlo transport at Lawrence Livermore National Laboratory. During this time we

Chapter 1: Introduction

1-7 Chapter 1: Introduction

estimate that 250 to 300 man-years of programmer and user experience have been
accumulated and incorporated into the present codes.

Shortly after Lawrence Livermore National Laboratory opened in 1953 work began on the
first generation of Livermore Monte Carlo codes. Between 1953 and 1962 much of the
methodology, techniques and conversion of software from machine language to the
earliest versions of FORTRAN was accomplished. During these years a number of
specialized Monte Carlo codes were developed, that contributed to the generation of more
generalized codes that were to follow. By 1960 work had begun on the SORS code [2-4].

The first production version of the SORS code in 1962, the direct predecessor of TART,
was a Monte Carlo neutron transport code; it did not transport photons. It used the
Livermore Evaluated Nuclear Library (ENDL) cross sections, but not the kinematics from
the ENDL library; SORS used hardwired models for secondary energy and angular
distributions. By today's standards the kinematics were crude, but adequate for their day.
Simple hardwired temperature models were used, only one isotropically scattering inelastic
level was allowed, elastic angular distributions used simple models to predict their energy
dependence. This meant that the results were sensitive to changes in the basic ENDL cross
sections, but users could not fully take advantage of the rapid improvements in evaluated
nuclear data during the early 1960's and subsequent years.

Preceding the development of TART, the TORTE code was developed in the later 1960's
to transport photons. TORTE provided a wide variety of user requested scoring options
which made the code extremely versatile. The basic transport and scoring (tally) structure
of TORTE was later used in TART. The extensive experience gained in using TORTE
significantly contributed to reducing the time and energy required to develop TART and
later TARTNP.

Based on the experience gained with SORS and TORTE, the original TART code in 1972
[2-4] was designed to be totally data driven. There were no longer any hardwired data or
models in the code. With this approach any improvements in the evaluated nuclear data in
ENDL could be immediately seen in the results of calculations. In addition TART could
now be used to improve the basic evaluated data by allowing direct comparisons between
the most recent experimental measurements and the results of TART Monte Carlo
calculations. This step of "closing the loop" between experiments, evaluations and
calculations led to rapid improvements in both the basic evaluated data in ENDL and in
the agreement between a wide variety of experimental and calculational results. Of
particular note is the improvements based on the Livermore pulsed sphere measurements
[16-21]. Starting from 14 MeV neutrons at the origin of each sphere these measurements
examined the time dependent leakage of neutrons from a wide variety of materials across
the periodic table; roughly 40 combinations of material and sphere thickness were used in
these measurements. The results of these measurements were instrumental in improving
the understanding of basic nuclear processes, as well as allowing a systematic evaluation
of what processes were important to model in order to obtain acceptable agreement
between experimental measurements and Monte Carlo calculations. One result of these

Chapter 1: Introduction

1-8 Chapter 1: Introduction

pulsed sphere measurement was the understanding of how important it is to include
correlated energy-angular distributions, which resulted in the inclusion of this data in
ENDL evaluated neutron data and simultaneous developments of methods for inclusion in
TART to use this data in Monte Carlo calculations. It's fair to say that TART was well
ahead of all the other Monte Carlo transport codes that are only now facing the problem
of considering the new correlated energy-angular distributions included in the most recent
ENDF/B-VI library.

During 1973-74 TART was extended to include both neutron induced photon production
and photon transport cross sections and kinematics. Once again the TORTE transport and
scoring modules were used and TARTNP (TART Neutron-Photon) was born. As in the
case of the development of TART, the development of TARTNP led to rapid
improvements in the Livermore Evaluated Data, since coupled neutron-photon transport
calculations required improved representations of the details of the physical processes
involved; this was particularly true with respect to the division between local energy
deposition and photon production due to neutron interactions to obtain realistic
comparisons to experiments while maintaining strict energy conservation.

Until about 1975 TARTNP was used mostly for higher energy applications; this was
mostly due to its use of 175 multi-group neutron cross sections. The multi-group
treatment meant that TARTNP could not properly handle resonance self-shielding, nor did
it have any treatment of thermal scattering in terms of either Doppler broadening of the
cross sections or the actual kinematics of elastic thermal scattering. In 1975 TARTNP was
upgraded to include the multi-band method [26-31] to handle resonance self-shielding and
a free atom scattering model to handle thermal scattering both in terms of Doppler
broadening cross sections using the SIGMA1 method [34, 36] and the kinematics of
elastic scattering [35]. Once these improvements were included in TARTNP the use of the
code greatly expanded to include applications across the entire energy scale from thermal
up to 20 MeV. Since then a wide variety of comparisons to other Monte Carlo codes,
particularly codes that use continuous energy neutron cross sections, have demonstrated
that TARTNP is: 1) very accurate, 2) incredibly fast - much of this speed being due to the
use of the multi-band method, rather than continuous energy cross sections.

Over the last 20 years since 1975 TARTNP has been heavily used for a wide variety of
applications, which has led to continuous feedback from users to improve the code and
extend its capabilities to meet the needs of its many users. By working closely with
TARTNP users and responding to their needs for an ever expanding variety of
applications, today the code has been extended to include an extremely large menu of
scoring and output options that meet the needs of most applications. Today using the
combination of Doppler broadened cross sections to produce cross sections at virtually
any temperature, thermal scattering kinematics, and multi-group cross sections in
conjunction with the multi-band method to handle resonance self-shielding, and modern
FORTRAN coding that allows TART95 to be used on virtually any computer (from
CRAY super computers to IBM-PCs), TART95 is an extremely versatile code that can be
used to very quickly solve a wide variety of problems.

Chapter 1: Introduction

1-9 Chapter 1: Introduction

Above we have discussed improvements in the physics of TART95 that have led to
continuous improvements in the capabilities of the code. Here it is worth mentioning the
incredible changes in the speed and size of computers that have contributed to allowing
the code to be applied to ever more complicated problems. The early versions of SORS
were run on a progression of computers including: IBM-7090, CDC-3600 and CDC-6600.
Memory increased from 32 K to 128 K words, and speed increased by roughly a factor of
ten, allowing SORS to run problems with up to 110 spatial zones. By the time TART
came along it was used on CDC-7600, CRAY-1 and CRAY-2, memory varied from 256
K to 8,000 K words and again speed increased, allowing TART to run problems with up
to 1,000 zones. This all involved the use of multi-million dollar super computers of their
day. Today we are using inexpensive workstations that have up to 256 megabytes of
memory, that run as fast as a CRAY-2, allowing us to run TART95 problems with up to
100,000 zones. For even less money you can run TART95 even on an IBM-PC at speeds
comparable to a CRAY-1.

One point that has really contributed to simplifying the developing and maintenance of
TARTNP during the last 20 years has been the decision to continue to use multi-group
neutron data. This may sound like heresy today, when all codes seem to be using
continuous energy cross sections. While continuous energy cross section Monte Carlo
codes have been faced with the ever increasing size and detail included in modern neutron
evaluation data libraries, TARTNP managed to keep plugging along using its 175 multi-
group neutron structure and the multi-band method to handle resonance self-shielding, and
yet a wide variety of comparisons indicate that the TARTNP results are as accurate as
those obtained using continuous energy Monte Carlo codes. Over the years the only
significant difference between TARTNP and continuous energy cross section codes has
been the time required to calculate answers to within a given accuracy; this was true in
1975 and is even more so today as the ever increasing detail in modern neutron
evaluations has continued to slow down Monte Carlo codes that use continuous energy
cross sections. The past 20 years of experience indicates that the multi-band method could
be called the ultimate and automatic variance reduction method for treating materials that
have many resonances, e.g., U238. It is the ultimate in the sense that it directly conserves
important physical observables, such as average cross section and distance to collision,
with just a hand full of histories. In comparison codes that use continuous energy cross
sections must run an enormous number of histories in materials that have resonances, in
order to obtain even a reasonable approximation to average cross sections and distance to
collision. It is automatic in the sense that compared to other variance reduction methods
that require the code user to be an expert in variance reduction in order to properly use it,
with the multi-band method all the code user need specify by input is that the method
should be used (highly recommended).

What Code Should You Use?

Do the above introductory remarks sounds like a commercial to encourage you to use
TART95? Of course they are. But we should point out that before deciding whether or

Chapter 1: Introduction

1-10 Chapter 1: Introduction

not you want to use it, you should ask the question: will it will meet your needs? Since
you are the only one who really knows what your needs are, only you can answer this
question. There are a few points that you should consider.

First, no computer code is perfect. We have run enough code intercomparisons to clearly
demonstrate that today's computer codes are far too large and complicated for anyone to
completely understand them, let alone guarantee that they are error free. Even with all the
hard work in the world and the best of intentions we have to accept that ALL OF THEM
contain errors. Without being able to intercompare results of exactly the same problem
using a variety of codes it is impossible to guarantee the accuracy of the results of one
code. If you would like to perform preliminary design calculations you can use any one of
a variety of codes. But when you get to the point of finalizing calculations you should
consider verifying your results using a variety of codes.

Second, no single computer is designed to produce the best answers most efficiently for
all problems. In designing any code usually the designer has to compromise between the
generality of the problems that a code can solve, and how efficiently, or fast, the code can
solve problems. The results can be that a very general code may take too long to solve
your problems, thereby making it impractical for your use. In the other extreme a very
efficient, and fast, code may not be able to accurately solve your type of problem.

We deal with a wide variety of applications and for the above reasons we use a number of
codes in combination to solve problems. We use TART95, as well as COG [32] and
MCNP [33]. Having all three codes available for use allows is to: 1) verify the accuracy of
results, and 2) select the code, or codes, that can best solve any given problem. Each of
these codes has advantages and disadvantages that you should be aware of.

COG: has by far the most faithful and best representation of the available nuclear and atom
data. It uses continuous energy, rather than multi-group, cross sections, and it uses
continuous secondary angular and energy distributions exactly as they come from the
evaluated data files. COG has a wide variety of user controlled variance reduction
schemes. COG was originally designed to solve deep penetration problems and for this
application a faithful representation of the secondary distributions is very important, as is
the availability of variance reduction scheme. The disadvantage of COG is that of the three
codes discussed here it is by far the slowest.

MCNP: is by far the most widely used of the codes discussed here. It also uses continuous
energy, rather than multi-group, cross sections. The secondary angular and energy
distributions are represented by equally probable bins, for speed of sampling. MCNP also
has a wide variety of user controlled variance reduction schemes. MCNP is quite a general
purpose code that can be used to solve a wide variety of problems; here the use of
variance reduction can be used to great advantage by experienced users. The disadvantage
of MCNP is also running time; it doesn't run anywhere nearly as slow as COG, but the
continuous energy cross section treatments still requires a lot of computer time to reach
convergence in many problems.

Chapter 1: Introduction

1-11 Chapter 1: Introduction

TART95: uses multi-group cross sections, and multi-band parameters to account for self-
shielding. Like MCNP, the secondary angular and energy distributions are represented by
equally probable bins, for speed of sampling. It has a minimum of user controlled variance
reduction methods, and instead relies on its own build in expertise to accelerate problems.
The major advantage of TART95 is its speed. Its major disadvantage would appear to be
that it is not as general as either COG or MCNP, based on its treatment of nuclear and
atomic data. But we feel that this has been more than offset by using the predictions of
reactor theory to allow the code to accurately, accelerate to convergence in most
problems, much faster than either of the other two codes.

As far as running time, comparison of a wide variety of results indicate that if we run
COG, MCNP and TART95 on the same problem we can end up spending hours, minutes,
or seconds, respectively using these codes.

We try to use the advantages of these codes by first running TART95 to perform as many
preliminary calculations as possible; this allows us to complete these calculations as
quickly as possible, or alternatively to perform many more calculations in the same amount
of time to allow us to examine various possible designs. Periodically we verify our
preliminary results by comparing TART95 results to those of the other codes. When it
eventually comes to any final design study we are willing to spend more computer time
and we run the codes in tandem to verify the final design.

Bottom line as far as what code should you use, is that we feel you should have a number
of codes available for your use. Naturally we recommend that one of these codes be
TART95.

